
How Efficiently do U.S. Cities Manage

Roadway Congestion?

Anthony J. Glass�, Karligash Kenjegalievayand Robin Sickleszx

Abstract

We estimate e¢ ciency and TFP growth for two measures of congestion and two measures

of the monetary value of congestion for the largest 88 contiguous cities in the U.S. over the

period 1982� 2007. Using Stochastic Frontier Analysis we �nd that the e¢ ciency scores for
congestion and the associated ranking of cities is sensitive to the measure of congestion. In

contrast, the e¢ ciency scores and rankings are robust for the two measures of the monetary

value of congestion. Most importantly, for the most valid measure of congestion and both

measures of the monetary value of congestion, we �nd that average TFP growth over the

study period is characterized by an upward trend. This is an encouraging sign even though

in all three cases growth is only zero or slightly less than zero at the end of the study period.

We therefore conclude that policies which have been used towards the end of the study

period such as providing incentives to carpool and encouraging employers to o¤er �exi-time

and telecommuting arrangements appear to have been e¤ective and should be implemented

more widely.
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1 Introduction

Roadway congestion is an acute problem in urban areas in the U.S. In 2007 the negative impact of

urban roadway congestion on the U.S. economy was valued at $87:2 billion (Texas Transportation

Institute, TTI, 2009).1 Over the period 1997�2007 the value of urban roadway congestion in real
terms increased by over 50%. To limit the impact of urban roadway congestion on U.S. GDP in

the future, e¢ cient management of the monetary value of congestion is key. Accordingly, in this

paper we examine how e¢ ciently two measures of congestion and two measures of the monetary

value of congestion are managed in urban areas in the U.S. To the best of our knowledge this is

the �rst e¢ ciency analysis of roadway congestion.

Pollution and congestion are the most widely cited negative externalities from economic ac-

tivity. There are a large number of non-parametric studies with multiple outputs which estimate

environmental e¢ ciency by incorporating at least one pollutant as an undesirable output (e.g.

Färe et al., 1989; 1996, Tyteca, 1997, Hernandez-Sancho et al., 2000, Reinhard et al., 2000 and

Zaim and Taskin, 2000). We do not discuss the non-parametric literature because we undertake

a stochastic frontier analysis (SFA). Two approaches have been used in the literature to esti-

mate environmental e¢ ciency using SFA. The �rst approach is simple and involves estimating

input-oriented environmental e¢ ciency by assuming that the relationship between pollution and

output resembles the traditional input-output relationship (e.g. Cuesta et al., 2009, Reinhard et

al., 1999; 2000 and Atkinson and Dorfman, 2005).2 The second method involves using an inverse

transformation of the bad output to obtain a good output (e.g. Fernández et al., 2005 and Koop

and Tole, 2008). Ouput-oriented environmental e¢ ciency can then be obtained by manipulating

the output-oriented e¢ ciency associated with the transformed output.3

Using output-oriented SFA with emissions for a pollutant as an input the shadow price of

emissions can be estimated. Any subsequent policy recommendations, however, could be erro-

neous because as Cuesta et al. (2009) note, the shadow price of sulphur dioxide emissions from

the U.S. electricity generation industry is not a good estimate of the market price. This is because

the theoretical assumptions on which duality theory is based do not re�ect the market price of

emissions. Ideally one would make policy recommendations based on a model which is estimated

using data on the monetary value of emissions for DMUs i.e. obtain input or ouput-oriented e¢ -

ciency associated with the monetary value of pollution. The availability of data on the monetary

value of pollutants for DMUs, however, is poor. In contrast, rich data on the monetary value of

congestion for U.S. cities is available from the TTI. Using this data for the 88 largest contiguous

U.S. cities for 1982 � 2007, we estimate input distance functions and report e¢ ciency scores for
the monetary value of congestion. Putting the monetary value of congestion into context, Small

and Verhoef (2007) estimate various incremental social values associated with an additional urban

vehicle mile in the U.S. for an average commute (12:1 miles and 22:5 minutes) in a medium-sized

1We use urban areas and cities interchangeably. Urban areas are determined by U.S. Census demographic
criteria and typically tend to be associated with a distinct city.

2Strictly speaking Atkinson and Dorfman (2005) model pollution as a "technology shifter". It nevertheless
a¤ects the technology in much the same way as an input (Koop and Tole, 2008).

3See Fernández et al. (2005) for a detailed explanation on how to manipulate the output-oriented e¢ ciency for
the transformed output to obtain environmental e¢ ciency.
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automobile. They estimate the marginal social values of travel time, accidents and environmental

externalities at 2005 prices to be $0:388, $0:178 and $0:016, respectively. The large di¤erence

between the marginal social values of travel time and environmental externalities suggests that

e¢ ciency analysis of roadway congestion is a very promising area for research.

In short, we estimate four input distance functions. For each model there are two inputs

and three outputs. Public transit passenger miles per head is an input in all four models. The

other input in each model is an early measure of congestion in model 1, a more recent measure

of congestion in model 2, a measure of the monetary value of congestion based on TTI (2009)

in model 3 and a more valid measure of the monetary value of congestion in model 4. The

three outputs in all four models are average daily vehicle miles per head per lane mile, a proxy

for suburbanization and the ratio of average daily peak travellers to city population.4 The key

empirical �ndings are as follows. At the sample mean the input and output elasticities for all four

models have the expected signs and are signi�cant thereby satisfying the monotonicity conditions.

We also �nd that the e¢ ciency scores and the associated ranking of cities varies according to which

measure of congestion is used. The mean e¢ ciency score is much higher when we use an early

measure of congestion compared to when we use a measure of congestion which is calculated using

a more recent methodology. In contrast, the e¢ ciency scores and rankings are very robust for the

two measures of the monetary value of congestion. At the sample mean we �nd that an increase in

public transit passenger miles per head leads to a very small fall in the early measure of congestion

and non-negligible falls in the recent measure of congestion and both measures of the monetary

value of congestion. Having said this, all the public transit elasticities outside the sample mean

for quintiles of the population size distribution decline over the study period.5 This suggests that

increasing public transit ridership was a much more e¤ective way of managing congestion and its

associated monetary value in the early years of the study period.

For the more recent measure of congestion and both measures of the monetary value of con-

gestion we �nd that average TFP growth is characterized by an upward trend. In all three cases,

there is a marked decline in average TFP in the early years but by the end of the study period

average TFP growth is slightly above or is approaching zero; which is a very encouraging sign

for the future. The decomposition of TFP growth into technical change, e¢ ciency change and

scale change suggests that for both measures of congestion and both measures of the monetary

value of congestion, average TFP growth primarily depends on the scale change. What then is

the reason for the upward trend in average TFP growth for the most recent measure of conges-

tion and both measures of the monetary value of congestion? It is most probably because as the

scale e¤ect gets progressively bigger over the study period, urban transportation policymakers

will be more concerned about congestion and its associated monetary value and will adopt more

innovative and productive policies: e.g. (i) ramp metering which involves using signals to restrict

4We justify the choice of inputs and outputs in the data section using, among other things, the results of
Hausman-Wu tests of whether endogeneity has a signi�cant e¤ect on the consistency of the estimated parameters.
We also provide in the data section details of the measure of congestion which the TTI initially used along with
details of the measure of congestion which they now favor. Why we favor one measure of the monetary value of
congestion over the other is explained in the data section.

5We thank an anonymous referee for recommending that we calculate public transit elasticities outside the
sample mean for quintiles of the population size distribution.
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the �ow of tra¢ c joining a freeway to prevent entering vehicles disrupting the mainlane �ow of

tra¢ c; (ii) incentives to carpool; (iii) encouraging employers to o¤er �exi-time and telecommuting

arrangements. Such innovations have been more prevalent towards the end of the study period

when the scale e¤ect is bigger, and on the basis of our TFP growth results these innovations have

been e¤ective and should therefore be implemented more widely in the short to medium term.

It is questionable, however, whether implementing these relatively conservative innovations more

widely will be su¢ cient to maintain the upward trend in average TFP growth in the medium to

long term.

The remainder of this paper is organized as follows. In section 2 the methodology is set out.

Speci�cally, we describe the approach which we use to model the technology and we explain

how we use each of the �tted models to compute TFP growth. The data set is described in

section 3, focusing on how the two measures of congestion and both measures of the monetary

value of congestion are computed. In section 4, the estimation results and the e¢ ciency scores

from the SFA are presented and discussed. In section 5, for both measures of congestion and

both measures of the monetary value of congestion, we present and analyze TFP growth and its

constituent parts. We conclude in section 6 by using our results to provide some policy advice on

managing congestion and its associated monetary value in the short to medium term.

2 Methodology

2.1 Modelling the Technology and Relative E¢ ciency

The stochastic frontier framework originates from Aigner et al. (1977) and Meeusen and van den

Broeck (1977). The distinguishing feature of stochastic frontier analysis (SFA) is that it eliminates

random shocks in the estimation of (in)e¢ ciency. To estimate (in)e¢ ciency SFA incorporates a

one-sided error term in addition to the traditional symmetric random noise term. Using SFA we

construct a best-practice frontier and evaluate the degree to which a city could decrease the level

of a measure of congestion or the level of a measure of its associated monetary value, relative

to other cities in the sample, holding the outputs constant. We thus employ an input-oriented

method.

The input requirement set I(y) represents the set of K inputs x 2 R+ which can produce a
set of R outputs y 2 R+ i.e. I(y) = fx 2 R+ : x can produce yg. We represent the technology at
time t by the input distance function, DI(y; x; t), à la McFadden (1978). Since the value of the

input distance function equals one if a city is on the e¢ cient frontier and exceeds one if a city is

ine¢ cient DI � 1 and so

lnDI(y; x; t)� u = 0; (1)

where u � 0.
The inverse of the input distance function DI is a measure of Farrell input based e¢ ciency.

u corresponds to the ine¢ cient slack in the use of inputs by a city relative to other cities in the

sample i.e. it is the feasible contraction in inputs which will project an ine¢ cient producer onto the
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e¢ cient frontier of the input requirement set. In econometric studies of ine¢ ciency measurement u

is treated as a random variable distributed across producers with a known asymmetric probability

density function. The properties of the input distance function as stated by McFadden (1978) are

as follows:

(i) non-decreasing in inputs, x: @ lnDI=@ lnxk � exk � 0 for k = 1; : : : ; K, where exk is
the kth input elasticity;

(ii) homogeneity of degree one in x: DI(y; x=xk; t) = DI(y; x; t)=xk;

(iii) concave in x;

(iv) non-increasing in outputs, y: @ lnDI=@ ln yr � eyr � 0 for r = 1; : : : ; R, where eyr is
rth output elasticity;

(v) the scale elasticity of the technology at time t is

Et = �
�
r=RP
r=1

@ lnDI=@ ln yr

��1
� �

�
r=RP
r=1

eyr

��1
:

Applying the property in (ii) and normalizing the inputs yields a dependent variable in the

regression analysis of � lnxK . Using the input distance de�nition this can be written as follows

� lnxK = lnDI(y; x=xK ; t)� u: (2)

Three elements (1) TL(y; x=xK ; t)it, (2) �0zit and (3) vit are needed to make equation (2) opera-

tional for a panel data set (i = 1; : : : ; N and t = 1; : : : ; T ). The three elements yield

� lnxKit � TL(y; x=xK ; t)it + �0zit + vit � ui; (3)

where: TL(y; x=xK ; t)it represents the technology as the translog approximation to the log of the

distance function containing the inputs normalized by the input on the left hand side; �0zit captures

the inter-city heterogeneity that is separate from ine¢ ciency where zit denotes the exogenous

characteristics; vit denotes the conventional idiosyncratic error term incorporating sampling error,

measurement error and speci�cation error; ui is the ine¢ ciency component of the disturbance

error.6

Using the notation exk � xk=xK , ly0 = (ln y1; : : : ; ln yR) and lex0 = (ln ex1; : : : ; ln exK�1), the
translog input distance function TL(y; ex; t)it is
TL(y; ex; t) = �0 + �0ly + �0lex+ 1

2
ly0Aly +

1

2
lex0Blex+ ly0�lex+ �1t+ 1

2
�2t

2 + �0lyt+ �0lext; (4)

where �0, �0, �, �0, �0, A, B and � are vectors and matrices of parameters to be estimated. The

continuity property of the function requires symmetry restrictions on the elements of the matrices

A and B: �rs = �sr and �jk = �kj, respectively.

In short, the modelling exercise has two objectives. The �rst is to estimate four translog

input distance functions, one for each measure of congestion and one for each measure of the

monetary value of congestion. We then use the estimated functions to calculate relative e¢ ciency.

6It is assumed that the e¢ ciency scores for both measures of congestion and both measures of the monetary
value of congestion are time invariant, hence why there is no subscript t in the �nal term of (3). This assumption
is justi�ed at the beginning of section 4.
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The second objective is to calculate the change in TFP for each measure of congestion and each

measure of the monetary value of congestion by calculating each of its three constituent parts and

then summing.

2.2 Parametric Total Factor Productivity Growth

Productivity growth is the growth of output minus the growth in input. TFP is the rate of growth

in a multiple output quantity index minus the rate of growth in a multiple input quantity index.

Orea (2002) notes that a TFP index which is generalized from the case of one input and one

output should satisfy four properties: (i) identity, (ii) monotonicity, (iii) separability and (iv)

proportionality.

Identity requires that if inputs and outputs do not change the TFP index is unity. Monotonicity

requires that the weighted output growth rates and input growth rates are chosen so that higher

output and lower input unambiguously improve TFP. Separability, which is a property of the

chosen technology set, permits the generalization to the multiple-output multiple-input case.

Proportionality requires that the weights in the output and input growth indices sum to unity.

Coelli et al. (2003) demonstrate that a TFP index which satis�es the aforementioned properties

can be constructed from the translog approximation to the input distance function. Since the

negative log of the input distance is input based technical e¢ ciency, TEI , and by making use of

the quadratic identity lemma (Caves et al., 1982) the following expression for lnTFPC can be

obtained

lnTFPC = [lnTEI(t+ 1)� lnTEI(t)] + 1
2
[(@ lnDI(t+ 1)=@t) + (@ lnDI(t)=@t)]

+

�
1
2

r=RP
r=1

((eyrt+1SF
I
t+1) + (eyrtSF

I
t )) (ln (yrt+1=yrt))

�
;

(5)

where:

TFPC is TFP change;

eyrt is the column vector of output elasticities in period t;

SF It is the input scale factor (see Saal et al., 2007), SF
I
t =

��
r=RP
r=1

eyrt + 1

�
=
r=RP
r=1

eyrt

�
=

1� Et.
The three terms in square brackets in (5) represent the familiar decomposition of TFPC into

e¢ ciency change, EC, technical change, TC, and scale change, SC:

TFPC = EC + TC + SC: (6)

Using the �rst order and second order elasticity and scale parameters from a �tted input distance

function we calculate EC, TC and SC and then sum to obtain TFPC.

3 Data

The data for the inputs, outputs and z�variables, unless otherwise stated, are extracted from the
data set which accompanies TTI (2009). The inputs, outputs and z�variables for the four models
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together with the summary statistics for the raw data are presented in Table 1. It is evident

from this table that the only di¤erence between the four models is which measure of congestion

or which measure of the monetary value of congestion is used as one of the inputs.

[Insert Table 1]

The roadway congestion index is the original measure of congestion that the TTI calculated

and for this reason is the �rst measure of congestion which we use. For precise details on how the

roadway congestion index is calculated see TTI (2009). Intuitively it is a measure of the density

of tra¢ c across an entire urban area which captures the intensity and duration of congestion. It

is calculated using generally available data for an entire urban area on total lane miles and vehicle

miles on freeways and major streets. To illustrate, if the roadway congestion index is equal to

1:0: (i) typical journey time in the morning and evening peaks would be 25% longer than in the

o¤-peak; (ii) the longer commute in the peak periods would be because of slower moving tra¢ c

on the freeways than would be the case in the o¤-peak but travel on major streets in the peaks

would be uncongested; (iii) there would be moderate congestion for 1:5� 2:0 hours in each of the
peak periods.

The roadway congestion index is a macroscopic measure of congestion as it does not operate at

the level of individual sections of an area�s network, some of which will be local bottlenecks. This

is the principal reason for the development of other measures of congestion. Another measure

of congestion that the TTI have since calculated, which is now much more widely used than the

roadway congestion index is annual person hours of delay per peak traveller. Annual person delay

for an urban area is basically calculated in two stages. Firstly, daily delay per vehicle is aggregated

across individual sections of an area�s network where delay is the di¤erence between travel time in

the morning and evening peaks (6 am�10 am and 3 pm�7 pm) and free-�ow travel time, which
is calculated assuming that free-�ow speeds are 60 m.p.h. on a freeway and 35 m.p.h. on major

streets. For precise details on how daily delay per vehicle for an entire urban area is calculated

see TTI (2009). Secondly, daily delay per vehicle for an urban area is multiplied by 250 (average

number of working days per year) and by 1:25 (the average number of vehicle occupants). Instead

of using annual person delay per peak traveller as our second measure of congestion we use annual

person delay per head because it is more representative of how well congestion is being managed

in an urban area. This is because it incorporates the number of people who are choosing not to

travel or who choose to travel in the o¤-peak instead, which could be a re�ection of changes in

travel behavior as a result of e¤ective policies to manage congestion.

The �rst measure of the monetary value of congestion for an urban area which we use is

the real monetary value of annual delay per head, where the monetary value of annual delay is

taken from TTI (2009) and includes three elements: (i) the monetary value of wasted fuel by

passenger vehicles as a result of travelling in congested conditions; (ii) the monetary value of

person delay which is annual person delay multiplied by the value of person travel time; (iii)

the monetary value of commercial delay which is annual delay per vehicle multiplied, �rstly, by

the percentage of vehicles in the peak periods which are trucks and, secondly, by the value of

commercial vehicle time. The monetary value of annual delay from TTI (2009) is based on the
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same value of person travel time and the same value of commercial vehicle time for each urban

area, which is controversial. Along the lines of Winston and Langer (2006), we calculate another

measure of the monetary value of congestion per head which is based on the convention that travel

time is valued at 50% of the hourly wage (Small and Verhoef, 2007). To calculate our second

measure we use: (i) annual person delay per head; (ii) average annual wage for the Metropolitan

Statistical Area (MSA) in which the urban area is located, which we obtained from the Bureau

of Economic Analysis; (iii) average annual hours worked per worker throughout the U.S. which

was obtained from OECD StatExtracts.7 ;8

In addition to a measure of congestion or a measure of the monetary value of congestion, there

is an another input in each model (public transit passenger miles per head) and three outputs

(average daily vehicle miles per head per lane mile, number of hours in the morning and evening

peaks when there is congestion somewhere on the network and the ratio of average daily peak

travellers to city population). The number of hours when there is congestion on any section of the

city�s network is a proxy for degree of suburbanization. This is because further suburbanization

will increase the length of the commute and lead to congestion earlier in the morning further

away from the central business district, thereby increasing the number of hours when there is

congestion somewhere on the network. We tested for potential endogeneity bias from the right-

hand-side input and outputs as follows. We estimated Hausman-Taylor models assuming each

input or output is endogenous, with or without assuming that the squared terms and interaction

terms pertaining to the relevant input or output are endogenous as well. Using the Hausman-

Wu test for endogeneity the relevant estimates from each Hausman-Taylor model are compared

against the within estimate of the model. More details on this approach are available in Adams

et al. (1999). The tests fail to reject the null hypothesis of no endogeneity bias from y1, y2, y3
and x2 with the �2 equal to 0:46, 0:61, 3:45 and 0:92 for Models 1� 4, respectively. More details
on the tests are available from the corresponding author on request. We therefore conclude that

our results are robust to endogeneity concerns.

Turning our attention to some of the z�variables. The two variables which we use to capture
the climate in a city are the number of days per year when the temperature is greater than 90

deg. F and annual precipitation. The data for both variables was obtained from the National At-

mospheric and Oceanic Administration.9 These variables were included because extreme weather

conditions (i.e. more hot days and more rain) is detrimental to pavement condition, which may

well lead to an increase in delays because there is likely to be more vehicle breakdowns and when

the road surface is poor drivers will reduce their speed to reduce the risk of an accident. Also,

more rain will increase delays because there will be an increase in the number of accidents and

driving conditions will be more di¢ cult so drivers will reduce their speed.

7The measures of the monetary value of congestion are at 1982 prices. The TTI values of person travel time
and commercial vehicle time are not based on the prevailing wage rate but on the perceived valuation of delay.
We therefore de�ate the TTI measure of the monetary value of congestion using the CPI. Our second measure is
based on the wage rate so we de�ate it using the GDP de�ator.

8Our second measure of the monetary value of congestion is therefore only based on the value of person travel
time and overlooks the value of commercial vehicle time and the value of wasted fuel.

9Because of data availability issues the climatic data for 2007 is assumed to apply throughout the study period.
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To capture the contribution to congestion from tra¢ c travelling through a city en route we

follow Winston and Langer (2006) and include a dummy variable which takes a value of 1 if

the city lies on a major interstate (i.e. a highway ending in 0 or 5). We also include Census

region dummies (West, Midwest, Northeast and South) and four population size dummies using

the classi�cation in TTI (2009): Small (population less than 500; 000), Medium (population over

500; 000 but less than 1 million), Large (population over 1 million but under 3 million) and Very

Large (population in excess of 3 million). To take account of the e¤ect of changes in speed limits

two dummy variables are included. The �rst is 0 before 1987 and 1 thereafter (when states were

permitted to raise the speed limit on rural interstate highways from 55 m.p.h. to 65 m.p.h.). The

second takes a value of 0 before 1995 and 1 thereafter (when all federal speed limit controls were

lifted, returning all authority on speed limit determination to the states).

4 Results from the Stochastic Frontier Analysis

4.1 Estimation Results

Urban transportation policy makers in the U.S. have opted to subtly manage roadway congestion

by, for example, providing incentives to carpool by creating designated High Occupancy Vehicle

(HOV) lanes which are free to use if there are a su¢ cient number of people in the vehicle. In

March 2007 there were 345 HOV facilities in the U.S. (Booz Allen Hamilton and HNTB, 2008).10

Policymakers in the U.S. evidently have an aversion to the step change in the incentive mechanism

which road pricing represents because only ten of the HOV facilities in March 2007 were also

Single Occupancy Vehicle (SOV) buy-in lanes, otherwise known as High Occupancy Toll (HOT)

lanes. Since over the study period there has not been a big change in the incentive mechanism

for automobile users it is reasonable to assume that congestion e¢ ciency and monetary value

e¢ ciency are both time-invariant. We therefore estimate the time-invariant e¢ ciency model for

panel data developed by Pitt and Lee (1981). Looking ahead, there would need to be a complete

change of policy on HOT lanes to create a big enough change in the incentive mechanism to justify

�tting an SFA model where e¢ ciency is time-variant (e.g. Battese and Coelli, 1992, Cornwell et

al., 1990 and Greene, 2005).

The estimation results for the four distance functions are presented in Table 2. We �rst discuss

the salient �ndings for the z-variables. In model 1, more of the coe¢ cients on the z�variables
are signi�cant than in models 2 � 4. For example, the coe¢ cient on population density (�10) is
only signi�cant in model 1. Nevertheless, a small number of corresponding parameters have the

same sign and are signi�cant in all four models. For example, the second climate parameter (�2)

is negative and signi�cant in all the models so we �nd robust evidence that more rainfall leads

to an increase in congestion and its associated monetary value. As expected, vis-à-vis very large

cities both measures of congestion and both measures of the monetary value of congestion are

lower in medium-sized conurbations and, in particular, small cities. In large cities, the congestion

index and the most valid measure of the monetary value of congestion (model 4) are signi�cantly

10As of March 2007, there were 88 HOV facilities in California, followed by 83 in Minnesota, 41 in Washington
State, 35 in Texas and 21 in Virginia.
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lower than in very large cities. In contrast, for large and very large cities there is no signi�cant

di¤erence between the most valid measure of congestion (model 2) or between the �rst measure

of the monetary value of congestion.

Interestingly, �11 is negative and signi�cant in models 2 � 4 which suggests there is a net
increase in annual person delay per head and both measures of the monetary value of congestion

from being part of the major interstate network. The implication is that the rise in annual person

delay per head and both measures of the monetary value of congestion from being part of the

major interstate network because more tra¢ c passes through en route more than o¤sets the fall

from improved highway links. The opposite is the case for model 1.

[Insert Table 2]

The input and output elasticities in all four models have the expected signs and are signi�cant

implying that the monotonicity conditions are satis�ed at the sample mean. For quintiles of the

population size distribution, the percentage of elasticities outside the sample mean which satisfy

the monotonicity properties are reported in Appendix A.1. We can therefore conclude that, in

general, the monotonicity conditions are satis�ed in all four models for a large proportion of each

quintile. This is not the case, however, for average daily vehicle miles per head per lane mile for

the 5th quintile in models 2� 4. This implies that when there is an increase in lane miles for the
5th quintile, the fall in annual person delay per head and both measures of the monetary value

of congestion more than o¤sets the rise from the induced travel e¤ect i.e. the increase in average

daily vehicle miles per head because of the increase in the supply of road space (Duranton and

Turner, 2011 and Cervero and Hansen, 2002). The opposite is the case for cities in the 1st�4th
quintiles. This suggests that urban transportation policymakers for cities in the 1st�4th quintiles
should not attempt to reduce annual person delay per head and both measures of the monetary

value of congestion by increasing lane miles because it will have the opposite e¤ect. And although

models 2� 4 suggest that increasing lane miles in cities in the 5th quintile would have the desired
e¤ect this does not take into account the cost of highway expansion. We revisit this issue in

the concluding section. Furthermore, we note from the Hessian results for models 2 � 4 that
the proportions of the sample for which the concavity condition is satis�ed are quite large (76%,

76% and 69%, respectively). For model 1, the concavity condition is only satis�ed for 33% of

the sample but this is not a great concern because it is annual person delay per head which is

the most valid measure of congestion. See Appendix A.2 for details of the test of the concavity

condition.

Returns to scale at the sample mean is 1:06 for the index model and 0:39, 0:46 and 0:29 for

models 2� 4, respectively. This suggests that a reduction in the congestion index is characterized
by mild increasing returns to scale, whereas a reduction in annual person delay per head and both

measures of the monetary value of congestion are characterized by quite large diseconomies of

scale. In Figure 1 we present the returns to scale elasticities outside the sample mean for quintiles

of the population size distribution. For models 2�4 stable decreasing returns to scale are observed
for cities in the 1st�3rd quintiles, whereas large �uctuations in returns to scale are observed for
cities in the 4th and 5th quintiles.
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[Insert Figure 1]

At the sample mean, vehicle miles per head per lane mile is not the source of the di¤erence

between returns to scale for model 1 and models 2 � 4 because the estimates of �1 are similar
in the four models. Rather the di¤erence is because the proxy for suburbanization (�2) and the

ratio of peak travellers to city population (�3) are bigger drivers of the most valid measure of

congestion and both measures of the monetary value of congestion than is the case in model 1.

Nevertheless, it is apparent from all four models that an increase in the proxy for suburbanization

leads to a marked rise in both measures of congestion and both measures of the monetary value of

congestion. This is presumably because an increase in suburbanization will lead to an increase in

journey distance for the commute to work and so congestion is likely to set in further away from

the central business district earlier in the morning. Similarly, in all four models the coe¢ cient

on the ratio of peak travellers to city population is large. This is almost certainly because the

ratio is capturing the economic conditions in a city. This is borne out by the particularly large

estimate of �3 in model 4, where the monetary value of congestion is based on the average wage

rate in the MSA.

It is evident from the estimation results that an increase in public transit passenger miles per

head leads to a very small fall in the congestion index and non-negligible falls in annual person

delay per head and both measures of the monetary value of congestion. From the elasticities in

Figure 2 we can see that the impact of public transit ridership on both measures of congestion

and both measures of the monetary value of congestion has declined over the study period for

all quintiles of the population size distribution. This suggests that policymakers should now

be placing less emphasis on increasing public transit ridership to manage congestion and its

associated monetary value than in previous decades. Finally, we brie�y discuss the implications

of the estimates of �1. The estimates of �1 in models 1� 4 suggest that for a hypothetical average
U.S. city with unchanged characteristics in the mid-year of the sample, the annual decrease in

technical change ranges from 0:4%�2:0%. One possible reason for the annual decline in technical
change is the reluctance of policymakers to make widespread use of the available technology to

internalize the congestion externality.

[Insert Figure 2]

4.2 E¢ ciency Results

An e¢ ciency score of 100% for annual person delay per head, for example, would indicate that a

city is doing the best that it can to tackle person delay per head, relative to the other cities in

the sample. The e¢ ciency scores by quintile of the population size distribution are presented in

Appendix A.3 and the distributions of the e¢ ciency scores are plotted in Figure 3.11 The average

e¢ ciency score for the congestion index across the 88 cities is 91% and the average e¢ ciency

score for annual person delay per head and both measures of the monetary value of congestion

11To plot the densities in Figures 3 and 5 we use the Gaussian density and obtain the bandwidth h using the
Sheather and Jones (1991) solve-the-equation plug-in-approach. When estimating the kernel densities to avoid bias
problems near the boundary, the re�ection method, as described by Silverman (1986) and Scott (1992), is used.
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is 72%. It is apparent that the distributions of e¢ ciency scores from model 1 and models 2 � 4
di¤er greatly.12 For models 2� 4 there is moderate multi-modality in the density of the e¢ ciency
scores, whereas for model 1 the density of the e¢ ciency scores is unimodal.

[Insert Figure 3]

A univariate distribution of e¢ ciency scores à la Figure 3 does not provide any information

about the relative performance of the cities. To shed some light on the relative performance of

the cities we use the contour plot in Figure 4 of the e¢ ciency scores from models 1 and 4.13 If,

for example, in Figure 4 the cities were concentrated on the diagonal line we could conclude that,

relative to the mean performance of the sample, cities�e¢ ciency scores for the congestion index

are no better or worse than cities�e¢ ciency scores for the second measure of the monetary value

of congestion. Cities are instead highly concentrated to the right and left of the diagonal so we

can infer that some cities are relatively more e¢ cient at tackling the congestion index, whereas

some others are relatively more e¢ cient at managing the second measure of the monetary value

of congestion.

[Insert Figure 4]

Moving on to discuss the results for individual conurbations. In the following discussion,

the income category (top third, middle third and bottom third), the categorization according

to population size and Census region are in parentheses.14 The best three e¢ ciency scores for

the congestion index are Laredo TX �100% (bottom income-small-Southern city), Bu¤alo NY

�99% (bottom income-large-Northeastern city) and Akron OH �99% (middle income-medium

sized-Midwestern city). The three highest e¢ ciency scores for annual person delay per head are

Beaumont TX �98% (bottom income-small-Southern city), Lancaster-Palmdale CA �98% (top

income-medium sized-Western city) and Oxnard-Ventura CA �97% (top income-medium sized-

Western city). For model 3, the two most e¢ cient cities are the same as for model 2 and the

third best performer is Memphis TN-MS-AR �97% (middle income-large-Southern city). The

best performers in model 4 are Salem OR �98% (bottom income-small-Western city), Bu¤alo NY
�98% (bottom income-large-Northeastern city) and Sarasota-Bradenton FL �98% (top income-

medium sized-Southern city).

The most ine¢ cient cities in the congestion index model are Los Angeles-Long Beach-Santa

Ana CA �75% (top income-very large-Western city), Cape Coral FL �73% (middle income-small-
Southern city) and Knoxville TN �71% (bottom income-small-Southern city) whereas the most
12The correlation and Spearman rank correlation coe¢ cients for the e¢ ciency scores from models 1 and 2 are

both around 0:46. For the e¢ ciency scores from models 2 � 4, all the correlation and Spearman rank correlation
coe¢ cients are above 0:91. The Wilcoxon rank-sum (Mann-Whitney) test rejects the null of equality of the
e¢ ciency distributions for models 1 and 2 at the 1% level with a z�statistic of 7:68. This suggests that the two
e¢ ciency distributions are drawn from di¤erent populations. As was expected, the null for the Wilcoxon rank-sum
test is not rejected for pairs of e¢ ciency distributions from models 2� 4.
13To construct Figures 4 and 6 we use bivariate Gaussian kernels and the bandwidths are calculated using the

solve-the-equation plug-in approach for a bivariate Gaussian kernel à la Wand and Jones (1994). In Figure 4, the
e¢ ciency scores are normalized relative to the mean. As was expected, the contour plots of the e¢ ciency scores
from model 1 against the e¢ ciency scores from model 2, 3 or 4 are indistinguishable so only the contour plot of
the e¢ ciency scores from model 1 against the scores from model 4 is presented.
14The basis for the income categorization is simply the ranking of cities according to mean real personal income

per head over the study period.
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ine¢ cient cities in models 2 and 3 are Pittsburgh PA �40% in model 2 and 42% in model 3

(middle income-large-Northeastern city), Charleston-North Charleston SC �38% in model 2 and

37% in model 3 (bottom income-small-Southern city) and Spokane WA �36% in model 2 and

35% in model 3 (bottom income-small-Western city). The worst performers in model 4 are once

again Pittsburgh PA �41% and Spokane WA �38% as well as San Jose CA �35% (top income-

large-Western city). It is evident from these results that good and poor performance across the

four models is not con�ned to cities which are located in a particular region or have particular

income and population size characteristics.

It is evident from Figure 3 that the distribution of the e¢ ciency scores for the most valid

measures of congestion and its associated monetary value (models 2 and 4) are almost identical.

Having said this, there are a 38 cities where a higher e¢ ciency score is observed for model 2

vis-à-vis model 4. The most striking cases are Bridgeport-Stamford CT-NY �75% in model 2

and 50% in model 4, San Jose CA �51% in model 2 and 35% in model 4 and to a lesser extent

Portland OR-WA �84% in model 2 and 70% in model 4, New Orleans LA �86% in model 2 and

76% in model 4 and Seattle WA �76% in model 2 and 66% in model 4. It is the monetary value of
congestion which will potentially have implications for the growth of cities so for the above cities

where the e¢ ciency score from model 2 is greater than the score from model 4, we conclude that

increasing how e¢ ciently the most valid measure of the monetary value of congestion is managed

so that it is similar to the e¢ ciency score for annual person delay per head is an achievable target.

How might these cities use the results reported here to achieve this target? They may analyze the

tra¢ c management projects in comparable cities (i.e. in terms of population size, income, etc.)

with a higher e¢ ciency score from model 4. It may also be worthwhile analyzing the approach

to congestion management used in cities where the e¢ ciency score for model 4 is substantially

greater than the score for model 2 e.g. Riverside-San Bernardino CA, Phoenix AZ, Bakers�eld CA,

Brownsville TX, Laredo TX and Sarasota-Bradenton FL. Furthermore, very often case studies of

urban transportation policies in other countries are used to inform domestic policy. The e¢ ciency

scores for, in particular, the most valid measure of the monetary value of congestion can be used

by policymakers in other countries to identify which U.S. cities are good candidates for detailed

case studies of tra¢ c management policies.

5 TFP Growth Results

TFP growth rates for the 88 cities over the study period for models 1 � 4 are obtained from
the input distance functions using (5).15 From the kernel densities of the TFP growth rates in

Figure 5 we can see that TFP growth for the congestion index is clearly unimodal with a mode

around zero. In contrast, the modes of the TFP growth rates from models 2� 4 are positive and
15The correlation and Spearman rank correlation coe¢ cients for the rates of TFP growth from models 1 and 2

are 0:01 and �0:04, respectively. The correlation and Spearman rank correlation coe¢ cients for the rates of TFP
growth from model 1 and models 3� 4 range from 0:00� 0:01 and �0:05� (�0:07), respectively. The correlation
and Spearman rank correlation coe¢ cients for the TFP growth rates from models 2�4 are much higher and range
from 0:40� 0:47 and from 0:86� 0:94, respectively.
The Wilcoxon rank-sum tests of the null of equality of TFP growth distributions from models 1� 4 are rejected

if the test involves the distribution from model 1. The other tests accept the null.
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there is some evidence of multi-modality. To get an insight into the cities�relative productivity

performance we draw on Figure 6 which is a contour plot of the rates of TFP growth for the most

valid measures of congestion and its associated monetary value. Since cities are concentrated

slightly to the right of the diagonal we can conclude that relative to the sample means, cities�

TFP growth for annual person delay per head is slightly higher than TFP growth for the second

measure of the monetary value of congestion.

[Insert Figures 5 and 6]

For models 1 � 4, average TFP growth and its three constituent parts (e¢ ciency change,
technical change and scale change) are plotted in Figure 7. Figure 8 graphs average TFP growth

for quintiles of the population size distribution.16 It is evident from Figure 7 that the paths of

average TFP growth for models 2� 4 are similar, which is not surprising because annual person
delay per head and both measures of the monetary value of congestion are based on the same

delay time data. In all three cases average TFP growth is characterized by an upward trend. This

is a very encouraging sign even though at the end of the study period there is either no change in

TFP or it is falling slightly. The decomposition of average TFP growth for models 2� 4 indicates
that in all three cases the scale change is the principal driver of TFP growth. For the moment

we observe this is the case and postpone any analysis of this �nding until we make some policy

recommendations in the �nal section of the paper.

[Insert Figures 7 and 8]

It is evident from the decomposition of average TFP growth for models 2� 4 that, although
the technical change component is negative throughout the study period, it is characterized by an

upward trend. The upward trend is possibly because over the study period cities have increasingly

made use of the technology which is available to help tackle congestion. There still remains

plenty of opportunity to make further use of the available technology and the extent to which

policymakers do so in the longer term is likely to have a big bearing on TFP growth for the most

valid measures of congestion and its associated monetary value. Finally, we note that there are

short cycles in average TFP growth for the congestion index (see the top panel of Figure 7). This

is not surprising because the congestion index is calculated using data on urban vehicle miles

which will depend on the business cycle. From the path of average TFP growth for the congestion

index we can see that there is a regular cyclical pattern up until 1995. The cyclical pattern is much

more irregular from thereon which is attributed to the repeal of the National Maximum Speed

Limit in 1995, returning all authority on speed limits to the states. Short cycles in average TFP

growth for some of the quintiles of the population size distribution are also observed for models

1� 4 (see selected quintiles in all four panels of Figure 8). It is evident for some of the quintiles
that some of the short cycles in average TFP growth are not synchronized because average TFP

growth in Figure 7 is relatively smooth for models 2� 4.
16Figures 7 and 8 were constructed having omitted the outliers, which were taken to be the top and bottom

2:5% of the standardized distributions.
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6 Policy Recommendations

Although over the study period both measures of congestion and both measures of the monetary

value of congestion have increased signi�cantly, which is very concerning, our TFP growth results

for the more recent measure of congestion (annual person delay per head) and both measures of

the monetary value of congestion suggest that the outlook is quite positive. This is because over

the study period for annual person delay per head and both measures of the monetary value of

congestion, we �nd that average TFP growth is characterized by an upward trend. In the early

years, average TFP declined sharply for annual person delay per head and both measures of the

monetary value of congestion but in the latter years average TFP growth was zero or approaching

zero in all three cases.

The input and output elasticities outside the sample mean for quintiles of the population size

distribution can be used to shed some light on policies which can further improve TFP growth

performance. From the models for annual person delay per head and both measures of the

monetary value of congestion, the average daily vehicle miles per head per lane mile elasticities

are negative for the vast majority of the cities in the 1st�4th quintiles but for nearly all the
cities in the 5th quintile the elasticities are positive. This suggests that for cities in the 5th

quintile, there is a net fall in annual person delay per head and both measures of the monetary

value of congestion when lane miles are increased i.e. the fall in congestion and its associated

monetary value from increasing road space more than o¤sets the rise from induced travel. The

opposite is the case for urban areas in the 1st�4th quintiles. This suggests urban transportation
policymakers for cities in the 1st�4th quintiles should not tackle annual person delay per head
and both measures of the monetary value of congestion by increasing lane miles because it will

not have the intended e¤ect.

Although our results suggest that increasing lane miles would reduce annual person delay

per head and both measures of the monetary value of congestion for cities in the 5th quintile,

Winston and Langer (2006) �nd that state investment in highways is not a cost e¤ective way of

reducing road users�congestion costs. This suggests that other policy tools should be used in

the largest cities. It is entirely consistent with average TFP growth for the most recent measure

of congestion and both measures of the monetary value of congestion to conclude that recent

innovative policies (e.g. ramp metering, incentives to carpool and encouraging employers to o¤er

�exi-time and telecommuting arrangements) have been e¤ective. At the very least, therefore, we

recommend that these innovations are implemented more widely in the short to medium term to

try and maintain the trend in average TFP growth for the most valid measures of congestion and

its associated monetary value. The decomposition of TFP growth into technical change, e¢ ciency

change and scale change suggests that for both measures of congestion and both measures of the

monetary value of congestion, the principal driver of average TFP growth is the scale change.

How does the scale change explain the upward trend in average TFP growth for the more recent

measure of congestion and both measures of the monetary value of congestion? One possibility is

that as cities grow and the scale e¤ect gets bigger, annual person delay per head and its associated

monetary value will rise and will become a bigger concern for urban transportation policymakers.

Policymakers will therefore be faced with using more innovative and productive policies. Having
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said this, ramp metering, incentives to carpool and encouraging employers to o¤er �exi-time and

telecommuting arrangements are all relatively conservative innovations and it is likely that more

innovative policies such as widespread road pricing will be needed to maintain the trend in average

TFP growth in the medium to long term. Because of the apparent success of relatively conservative

innovations policymakers may be more willing to commit to more ambitious innovations. And it

would not necessarily be very di¢ cult to implement road pricing more widely and could simply

involve introducing more HOT lanes by changing the status of a lot of the existing HOV lanes

where buy-in is not permitted.
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Figure 1: Returns to scale elasticities by quintile: 1982-2007
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Figure 2: Public transit passenger miles per head elasticities by quintile: 1982-2007
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Figure 7: Average TFP growth: 1983-2007 .
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Figure 8: Average TFP growth by quintile: 1983-2007 .
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Table 1: Summary statistics
Variable Mean St.Dev. Min Max

Variables minimized i.e. inputs
Roadway congestion index (Model 1) x1 0.91 0.21 0.41 1.58
Annual person hours of delay per head (Model 2) x1 11.02 7.63 0.64 39.13
Real annual value of congestion per head (Model 3) x1 102.24 71.69 6.19 384.48
Real annual value of congestion (0:5W) per head (Model 4) x1 64.56 56.01 2.13 373.17
Annual passenger miles on public transit per head x2 116.87 139.93 1.97 1175.1
Variables held constant i.e. outputs
Average daily vehicle miles per head per lane mile y1 0.01 .008 .0003 .052
Number of hours per day when there is congestion y2 5.02 1.74 2.00 7.99
somewhere on the city�s network
Ratio of average daily peak travellers to city population y3 1.62 0.08 1.43 1.86
Weather characteristics
Number of days per year when the temperature is z1 57.92 45.64 0.00 189.99
greater than 90 deg. F
Annual precipitation z2 33.20 16.05 1.88 69.16
Geographical location
Northeast (#) z3 0.16 0.37 0 1
Midwest (#) z4 0.19 0.40 0 1
South (#) z5 0.41 0.49 0 1
West (#) z6 0.28 0.45 0 1
Population size and density characteristics
Small (#) z7 0.17 0.38 0 1
Medium (#) z8 0.34 0.47 0 1
Large (#) z9 0.33 0.47 0 1
Very large (#) 0.16 0.37 0 1
Population Density (persons per square mile) z10 2203.7 853.1 988.9 5664.0
Roadway links and speed limits
City located on a major interstate highway (#) z11 0.77 0.42 0 1
States are given authority over all speed limits (#) z12 0.47 0.50 0 1
Rural interstate speed limit law change (#) z13 0.79 0.39 0 1

Notes: # denotes a dummy variable. The sum of the means for the regional dummies exceeds 100%.
This is because a small number of cities lie in two regions such as Philadelphia (Northeast and
South) and Cincinnati (Midwest and South).

24



Table 2: Estimated input distance function parameters

Variable Parameter
Model 1�
Congestion
Index (x1)

Model 2�
Annual Person
Hours of Delay
per head (x1)

Model 3�
Real Annual

Congestion Value
per head (x1)

Model 4�
Real Annual

Congestion Value
(0.5W) per head (x1)

Coef. Std. Error Coef. Std. Error Coef. Std. Error Coef. Std. Error
ln y1 �1 -0.108 0.009*** -0.131 0.030*** -0.107 0.030*** -0.110 0.030***
ln y2 �2 -0.376 0.007*** -0.862 0.029*** -0.868 0.030*** -0.859 0.030***
ln y3 �3 -0.462 0.133*** -1.579 0.461*** -1.223 0.464** -2.517 0.475***
lnx2 �1 0.012 0.003*** 0.249 0.010*** 0.261 0.010*** 0.271 0.011***
(ln y1)2 A1;1 -0.021 0.004*** -0.100 0.014*** -0.110 0.014*** -0.109 0.014***
(ln y2)2 A2;2 0.000 0.013 0.215 0.062*** 0.214 0.062*** 0.306 0.066***
(ln y3)2 A3;3 7.662 1.857*** -25.753 6.991*** -25.809 7.017*** -25.436 7.301***
ln y1 ln y2 A1;2 0.015 0.009 0.203 0.034*** 0.203 0.034*** 0.243 0.035***
ln y1 ln y3 A1;3 -0.118 0.138 -1.412 0.477** -1.330 0.481** -1.987 0.479***
ln y2 ln y3 A2;3 -1.791 0.253*** -0.633 1.040 -0.751 1.045 0.029 1.106
(lnx2)2 B1 0.009 0.001*** 0.067 0.005*** 0.070 0.005*** 0.080 0.005***
ln y1 lnx2 �1;2 0.008 0.003* 0.042 0.011*** 0.037 0.012** 0.031 0.012*
ln y2 lnx2 �2;2 -0.016 0.007* 0.041 0.032 0.046 0.032 0.116 0.033***
ln y3 lnx2 �3;2 0.433 0.128*** -0.353 0.421 -0.460 0.427 0.165 0.456
t �1 -0.004 0.001*** -0.015 0.002*** -0.017 0.002*** -0.020 0.003***
t2 �2 -0.00001 0.000 -0.000 0.0002 -0.000 0.0002 -0.000 0.0002
ln y1t �1 0.001 0.001 0.004 0.003 0.004 0.003 0.007 0.003*
ln y2t �2 0.011 0.002*** -0.000 0.006 -0.000 0.006 -0.009 0.006
ln y3t �3 -0.030 0.021 0.303 0.075*** 0.316 0.075*** 0.316 0.077***
lnx2t �1 -0.003 0.001*** 0.005 0.002* 0.006 0.002* 0.005 0.002
z1 �1 0.004 0.005 0.012 0.009 0.015 0.009 0.020 0.010
z2 �2 -0.040 0.014** -0.211 0.033*** -0.215 0.033*** -0.119 0.033***
z3 �3 0.015 0.024 0.068 0.096 0.044 0.090 0.002 0.098
z4 �4 -0.062 0.016*** 0.018 0.074 0.006 0.071 -0.036 0.071
z5 �5 -0.066 0.021** -0.148 0.077 -0.161 0.074* -0.147 0.078
z6 �6 -0.089 0.033** -0.280 0.102** -0.292 0.100** -0.201 0.103
z7 �7 0.503 0.034*** 1.180 0.113*** 1.116 0.105*** 1.230 0.108***
z8 �8 0.244 0.023*** 0.545 0.115*** 0.480 0.101*** 0.665 0.094***
z9 �9 0.131 0.022*** 0.125 0.090 0.080 0.082 0.203 0.082*
z10 �10 -0.086 0.008*** -0.021 0.032 -0.016 0.031 0.018 0.031
z11 �11 0.037 0.017* -0.123 0.052* -0.131 0.047** -0.090 0.044*
z12 �12 0.002 0.004 0.015 0.012 0.016 0.013 0.008 0.013
z13 �13 -0.010 0.005* 0.003 0.017 0.027 0.018 0.008 0.018
Constant -0.063 0.027* 0.146 0.130 0.211 0.117 0.050 0.114

Log likelihood function 4253.9 1243.2 1209.0 1153.6

Note: *, **, *** denote statistical signi�cance at the 5%, 1% and 0.1% levels, respectively.
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A Appendices

A.1 Monotonicity properties outside the sample mean
Monotonicity of x2
(property (i))

Monotonicity of y1
(property (iv))

Monotonicity of y2
(property (iv))

Monotonicity of y3
(property (iv))

Model 1 - Congestion Index (x1)

Quintile 1 83.3 100.0 100.0 63.9
Quintile 2 77.6 100.0 100.0 69.2
Quintile 3 77.4 100.0 100.0 82.7
Quintile 4 75.3 100.0 100.0 75.8
Quintile 5 73.9 87.6 100.0 82.7

Model 2 - Annual Person Hours of Delay per head (x1)

Quintile 1 99.1 100.0 100.0 100.0
Quintile 2 100.0 100.0 100.0 100.0
Quintile 3 98.9 100.0 100.0 100.0
Quintile 4 100.0 66.3 100.0 84.2
Quintile 5 99.4 2.6 100.0 51.3

Model 3 - Real Annual Monetary Value of Congestion per head (x1)

Quintile 1 98.9 100.0 100.0 100.0
Quintile 2 100.0 100.0 100.0 100.0
Quintile 3 98.9 100.0 100.0 99.8
Quintile 4 100.0 48.9 100.0 75.6
Quintile 5 99.4 0.0 100.0 47.4

Model 4 - Real Annual Monetary Value of Congestion (0.5W) per head (x1)

Quintile 1 98.9 100.0 100.0 100.0
Quintile 2 100.0 100.0 100.0 100.0
Quintile 3 98.9 100.0 100.0 100.0
Quintile 4 100.0 48.9 100.0 88.9
Quintile 5 99.4 0.9 100.0 51.3

Notes: The numbers are percentages of elasticities which satisfy the monotonicity properties outside the sample mean.
Quintile 1 refers to the smallest cities with average population size over the study period between 0 and 20 percentiles
and Quintile 5 refers to the largest cities between 80 and 100 percentiles.
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A.2 Test of the concavity condition

Microeconomic theory assumes that the form of an input distance function, DI , satis�es a partic-
ular curvature property i.e. DI is linearly homogeneous and concave in inputs x. The symmetry
property and homogeneity of degree one in x of DI implies that only K(K � 1)=2 elements of the
Hessian matrix, H(x), where H(x) � @2DI

@x@x0 , are linearly independent. Applying the arguments of
Diewert and Wales (1987), the Hessian of the input distance function with respect to x can be
calculated as follows:

H(x) = B�cex+ exex0;
where: cex is a diagonal matrix with estimated input elasticities, exk for k = 1; : : : ; K � 1, on the
leading diagonal and zeros elsewhere; ex is a vector of estimated input elasticities, exk; B is the
matrix of second order coe¢ cients on the input terms in the translog function.
Concavity of the input distance function in x requires that the Hessian matrix is negative

semide�nite. Whether the Hessian matrix is negative semide�nite can be veri�ed from the sign
pattern of the principal minors of the Hessian. The necessary and su¢ cient conditions for DI to
be concave are as follows: all the odd-numbered principal minors of the Hessian must be non-
positive and all the even-numbered principal minors must be non-negative. At the sample mean
with mean corrected data, the Hessian is given by

H(x) = B� b� + ��0;
where b� is a diagonal matrix with estimated input elasticities, �k for k = 1; : : : ; K � 1, on the
leading diagonal and zeros elsewhere, and � is a vector of estimated input elasticities, �k. The
Stata code for the concavity test is available from the corresponding author on request.
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A.3 E¢ ciency scores

City
Model 1�
Congestion
Index

Model 2�
Annual Person
Hours of Delay
per head

Model 3� Real
Annual Value
of Congestion
per head

Model 4� Real
Annual Value of
Congestion (0:5W)
per head

E¤. Score Rank E¤. Score Rank E¤. Score Rank E¤. Score Rank
1st quintile of cities by population size

Bakers�eld CA 0.993 6 0.734 42 0.703 44 0.836 28
Beaumont TX 0.864 69 0.977 1 0.974 2 0.939 14
Boulder CO 0.976 18 0.914 16 0.948 13 0.857 25
Brownsville TX 0.967 24 0.791 33 0.751 40 0.958 10
Cape Coral FL 0.734 87 0.602 63 0.608 61 0.674 47
Colorado Springs CO 0.993 4 0.772 36 0.790 35 0.768 38
Columbia SC 0.772 82 0.587 67 0.557 70 0.642 57
Corpus Christi TX 0.834 76 0.506 80 0.506 81 0.543 73
Eugene OR 0.844 75 0.636 56 0.632 54 0.632 60
Indio-Cathedral City-Palm Springs CA 0.928 41 0.558 71 0.549 72 0.647 55
Knoxville TN 0.706 88 0.461 85 0.457 84 0.505 77
Lancaster-Palmdale CA 0.922 44 0.975 2 0.978 1 0.969 5
Laredo TX 0.996 1 0.589 66 0.567 66 0.696 44
Little Rock AR 0.802 79 0.676 47 0.675 46 0.701 41
Pensacola FL-AL 0.768 83 0.785 35 0.812 29 0.824 31
Poughkeepsie-Newburgh NY 0.972 19 0.935 14 0.947 14 0.938 16
Salem OR 0.906 51 0.964 6 0.967 4 0.975 1
Spokane WA 0.755 84 0.359 88 0.351 88 0.376 87
Average 0.874 0.712 0.710 0.749
2nd quintile of cities by population size

Akron OH 0.993 3 0.957 9 0.952 12 0.970 4
Albany-Schenectady NY 0.928 42 0.565 70 0.559 69 0.545 72
Albuquerque NM 0.899 56 0.575 69 0.566 67 0.599 64
Allentown-Bethlehem PA-NJ 0.923 43 0.647 51 0.660 52 0.663 49
Charleston-North Charleston SC 0.750 85 0.376 87 0.372 87 0.424 85
El Paso TX-NM 0.971 20 0.809 31 0.800 32 0.859 24
Fresno CA 0.963 27 0.506 79 0.479 82 0.580 67
Grand Rapids MI 0.978 17 0.520 76 0.521 77 0.542 74
New Haven CT 0.876 62 0.737 41 0.761 38 0.686 46
Omaha NE-IA 0.953 32 0.630 57 0.664 51 0.637 58
Oxnard-Ventura CA 0.912 47 0.971 3 0.962 8 0.958 9
Raleigh-Durham NC 0.989 9 0.935 13 0.906 20 0.939 15
Sarasota-Bradenton FL 0.857 74 0.889 20 0.943 15 0.972 3
Spring�eld MA-CT 0.868 67 0.746 40 0.795 34 0.755 40
Toledo OH-MI 0.981 14 0.964 8 0.963 7 0.954 12
Tucson AZ 0.865 68 0.475 83 0.444 85 0.489 80
Wichita KS 0.883 60 0.641 55 0.673 48 0.663 50
Average 0.917 0.703 0.707 0.720
3rd quintile of cities by population size

Austin TX 0.983 13 0.929 15 0.911 18 0.852 26
Birmingham AL 0.884 59 0.613 59 0.607 62 0.605 61
Bridgeport-Stamford CT-NY 0.812 78 0.746 39 0.749 41 0.497 79
Charlotte NC-SC 0.979 15 0.909 17 0.876 22 0.862 22
Columbus OH 0.986 11 0.826 28 0.812 28 0.834 29
Dayton OH 0.904 55 0.606 61 0.617 57 0.579 68
Hartford CT 0.859 72 0.507 78 0.524 76 0.453 84
Indianapolis IN 0.944 36 0.642 54 0.601 63 0.650 53
Jacksonville FL 0.958 31 0.819 30 0.831 26 0.804 34
Las Vegas NV 0.909 49 0.556 72 0.551 71 0.602 63
Louisville KY-IN 0.937 38 0.530 75 0.529 74 0.532 75
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City
Model 1�
Congestion
Index

Model 2�
Annual Person
Hours of Delay
per head

Model 3� Real
Annual Value
of Congestion
per head

Model 4� Real
Annual Value of
Congestion (0:5W)
per head

E¤. Score Rank E¤. Score Rank E¤. Score Rank E¤. Score Rank
3rd quintile of cities by population size (cont.)

Memphis TN-MS-AR 0.971 21 0.968 4 0.969 3 0.963 7
Nashville-Davidson TN 0.875 63 0.499 81 0.510 80 0.488 81
Oklahoma City OK 0.907 50 0.895 19 0.928 16 0.865 21
Richmond VA 0.911 48 0.604 62 0.625 55 0.548 70
Rochester NY 0.874 64 0.663 49 0.682 45 0.633 59
Salt Lake City UT 0.858 73 0.494 82 0.511 79 0.465 82
Tulsa OK 0.965 25 0.646 52 0.674 47 0.603 62
Average 0.918 0.692 0.695 0.658
4th quintile of cities by population size

Bu¤alo NY 0.994 2 0.965 5 0.964 5 0.973 2
Cincinnati OH-KY-IN 0.989 10 0.951 12 0.952 11 0.952 13
Cleveland OH 0.933 39 0.954 10 0.959 10 0.895 19
Denver-Aurora CO 0.886 58 0.613 60 0.610 59 0.547 71
Kansas City MO-KS 0.968 23 0.851 23 0.841 24 0.860 23
Milwaukee WI 0.968 22 0.667 48 0.668 49 0.700 43
New Orleans LA 0.992 7 0.855 21 0.820 27 0.764 39
Orlando FL 0.964 26 0.474 84 0.475 83 0.500 78
Pittsburgh PA 0.871 66 0.401 86 0.419 86 0.413 86
Portland OR-WA 0.905 53 0.837 26 0.834 25 0.700 42
Providence RI-MA 0.914 45 0.844 24 0.892 21 0.923 17
Riverside-San Bernardino CA 0.781 81 0.822 29 0.784 36 0.959 8
Sacramento CA 0.876 61 0.703 44 0.717 43 0.643 56
San Antonio TX 0.959 30 0.789 34 0.799 33 0.788 36
San Jose CA 0.906 52 0.508 77 0.516 78 0.351 88
Tampa-St. Petersburg FL 0.819 77 0.852 22 0.909 19 0.923 18
Virginia Beach VA 0.950 33 0.752 38 0.760 39 0.830 30
Average 0.922 0.755 0.760 0.748
5th quintile of cities by population size

Atlanta GA 0.863 70 0.652 50 0.623 56 0.653 52
Baltimore MD 0.905 54 0.590 65 0.565 68 0.530 76
Boston MA-NH-RI 0.895 57 0.617 58 0.586 65 0.586 65
Chicago IL-IN 0.942 37 0.827 27 0.802 31 0.841 27
Dallas-Fort Worth-Arlington TX 0.990 8 0.906 18 0.915 17 0.891 20
Detroit MI 0.948 35 0.678 46 0.667 50 0.690 45
Houston TX 0.978 16 0.840 25 0.846 23 0.779 37
Los Angeles-Long Beach-Santa Ana CA 0.748 86 0.583 68 0.612 58 0.657 51
Miami FL 0.960 28 0.954 11 0.963 6 0.966 6
Minneapolis-St. Paul MN 0.863 71 0.601 64 0.608 60 0.584 66
New York-Newark NY-NJ-CT 0.950 34 0.964 7 0.961 9 0.956 11
Philadelphia PA-NJ-DE-MD 0.984 12 0.799 32 0.808 30 0.810 33
Phoenix AZ 0.871 65 0.688 45 0.599 64 0.816 32
San Diego CA 0.800 80 0.544 73 0.543 73 0.575 69
San Francisco-Oakland CA 0.959 29 0.706 43 0.769 37 0.791 35
Seattle WA 0.993 5 0.761 37 0.719 42 0.664 48
St. Louis MO-IL 0.913 46 0.643 53 0.637 53 0.647 54
Washington DC-VA-MD 0.932 40 0.541 74 0.528 75 0.458 83
Average 0.916 0.716 0.708 0.716

Sample Average 0.909 0.715 0.716 0.718
Sample Standard Deviation 0.071 0.168 0.172 0.174
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